The DEK1 Calpain Linker Functions in Three-Dimensional Body Patterning in Physcomitrella patens.
نویسندگان
چکیده
The DEFECTIVE KERNEL1 (DEK1) calpain is a conserved 240-kD key regulator of three-dimensional body patterning in land plants acting via mitotic cell plane positioning. The activity of the cytosolic C-terminal calpain protease is regulated by the membrane-anchored DEK1 MEM, which is connected to the calpain via the 600-amino acid residue Linker. Similar to the calpain and MEM domains, the Linker is highly conserved in the land plant lineage, the similarity dropping sharply compared with orthologous charophyte sequences. Using site-directed mutagenesis, we studied the effect on Physcomitrella patens development by deleting the Linker and two conserved Linker motifs. The results show that removal of the Linker has nearly the same effect as removal of the entire DEK1 gene. In contrast, deletion of the conserved Laminin_G3 (LG3) domain had a milder effect, perturbing leafy gametophore patterning and archegonia development. The LG3 domain from Marchantia polymorpha is fully functional in P. patens, whereas angiosperm sequences are not functional. Deletion of a C-terminal Linker subsegment containing a potential calpain autolytic site severely disturbs gametophore development. Finally, changing one of the three calpain active-site amino acid residues results in the same phenotype as deleting the entire DEK1 gene. Based on the conserved nature of animal and DEK1 calpains, we propose that the DEK1 MEM-Linker complex inactivates the calpain by forcing apart the two calpain subunits carrying the three amino acids of the active site.
منابع مشابه
Defective Kernel 1 (DEK1) is required for three-dimensional growth in Physcomitrella patens
Orientation of cell division is critical for plant morphogenesis. This is evident in the formation and function of meristems and for morphogenetic transitions. Mosses undergo such transitions: from two-dimensional tip-growing filaments (protonema) to the generation of three-dimensional leaf-like structures (gametophores). The Defective Kernel 1 (DEK1) protein plays a key role in the perception ...
متن کاملGenetic analysis of DEFECTIVE KERNEL1 loop function in three-dimensional body patterning in Physcomitrella patens.
DEFECTIVE KERNEL1 (DEK1) of higher plants plays an essential role in position-dependent signaling and consists of a large transmembrane domain (MEM) linked to a protease catalytic domain and a regulatory domain. Here, we show that the postulated sensory Loop of the MEM domain plays an important role in the developmental regulation of DEK1 activity in the moss Physcomitrella patens. Compared wit...
متن کاملThe calpain domain of the maize DEK1 protein contains the conserved catalytic triad and functions as a cysteine proteinase.
Development of the aleurone layer of maize grains requires the activity of the Defective kernel 1 (Dek1) gene, encoding a predicted 240-kDa membrane-anchored protein with a C terminus similar to animal calpain domain II&III. Three-dimensional modeling shows that DEK1 domain II contains a conserved calpain catalytic triad and that domain II&III has a predicted structure similar to m-calpain. Rec...
متن کاملTargeted Gene Knockouts Reveal Overlapping Functions of the Five Physcomitrella patens FtsZ Isoforms in Chloroplast Division, Chloroplast Shaping, Cell Patterning, Plant Development, and Gravity Sensing
Chloroplasts and bacterial cells divide by binary fission. The key protein in this constriction division is FtsZ, a self-assembling GTPase similar to eukaryotic tubulin. In prokaryotes, FtsZ is almost always encoded by a single gene, whereas plants harbor several nuclear-encoded FtsZ homologs. In seed plants, these proteins group in two families and all are exclusively imported into plastids. I...
متن کاملAn ancestral stomatal patterning module revealed in the non-vascular land plant Physcomitrella patens
The patterning of stomata plays a vital role in plant development and has emerged as a paradigm for the role of peptide signals in the spatial control of cellular differentiation. Research in Arabidopsis has identified a series of epidermal patterning factors (EPFs), which interact with an array of membrane-localised receptors and associated proteins (encoded by ERECTA and TMM genes) to control...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 172 2 شماره
صفحات -
تاریخ انتشار 2016